
An Exploration of the Lottery Ticket Hypothesis
through Fisher Pruning and the Lens of Mode

Connectivity

Matevz Matjasec
mm2676

Teodora Reu
tr500

Thomas Christie
thwc3

Yumna Naqvi
yfn21

Abstract

Since Frankle & Carbin conjectured the “Lottery Ticket Hypothesis”, demonstrat-
ing that trainable sparse networks can be found with iterative magnitude pruning
(IMP), much research has been focused on developing novel, computationally more
efficient pruning algorithms.
We investigate the efficacy of Fisher pruning as an alternative to magnitude prun-
ing in the iterative pruning framework. We find that Fisher pruning performs
similarly to magnitude pruning, although the latter tends to find better perform-
ing sub-networks at initialisation; supermasks. By investigating the difference in
weights chosen to prune by the two techniques, we believe that this can be partially
explained by the hypothesis that pruning small weights can be viewed as a form of
training, as suggested in [1].
We then use the lens of mode connectivity to further investigate the nature of the
“winning tickets” produced with the iterative pruning framework. We reproduce the
main findings from [2] and investigate whether this linear mode connectivity phe-
nomenon is a general property of “winning” subnetworks by performing instability
analysis on sparse subnetworks found with alternative pruning algorithms. While
our findings are inconclusive they do hint that the subnetworks found with IMP
are not fundamentally different from subnetworks found with alternative pruning
algorithms.
Information about our codebase can be found in Appendix A.

1 Introduction

It is not a secret that many neural networks are over-parameterised [3], enabling network compression
[4, 5]. Before the Lottery Ticket Hypothesis (LTH) [6], many compression algorithms were proposed
[7, 8]. A popular method to reduce the dimensionality of a trained model is neural pruning. Neural
pruning involves freezing (i.e. setting to zero) neural components such as weights while maintaining
minimal change in the accuracy. Although the sparse networks obtained with various pruning methods
worked well, training the pruned networks from scratch resulted in underperforming sparse networks.

In recent years, the LTH [6] has received considerable attention. This work presents a simple
algorithm for finding sparse subnetworks within larger networks that are trainable from scratch.
Their approach, iterative magnitude pruning (IMP), works iteratively in steps. At one step they train
the network completely, for a set number of iterations. After this, they pick a threshold t such that
p% of the weights are smaller than t. All weights smaller than t are then set to 0, and the rest of the

Submitted group project report for R252 (Theory of Deep Learning) course .

weights are reset to their initial values. They found that after iteratively removing the majority of
the network’s weights, the networks still performed well, and in some cases even outperformed the
original unpruned network.

This work [6] opened a line of research with scholars studying this procedure from various perspec-
tives: (1) studying other pruning methods, and the reset values for pruned weights and remaining
weights [1], (2) studying the apparition of supermasks (pruned networks that achieve good perfor-
mance without any training) [1, 9], (3) studying the stability of such subnetworks [2], and (4) adapting
such iterative pruning methods to other network architectures such as BERT [10], and Graph Neural
Networks [11].

In this work, we explore the efficacy of using Fisher pruning [12] as an alternative to magnitude
pruning in the iterative pruning framework introduced in the LTH paper [6]. We apply it to the same
settings as [6], namely LENET on MNIST, and RESNET-20 on CIFAR10, for a full comparison.
We also carry out instability analysis of the networks as proposed by [2]. We replicate the main
findings of [2] and extend the analysis by looking at alternative pruning algorithms again applied to
the same settings. The contributions of this paper can be summarised as follows:

• Implemented Fisher pruning and evaluated Fisher pruning, magnitude pruning and random
pruning from various perspectives: (1) the characteristics of weights chosen to prune by
the different methods, (2) the accuracy achieved by the sparse networks identified, (3) the
speed of training the sparse networks identified, (4) the appearance of supermasks with the
different pruning techniques, and (5) the per-layer sparsity differences which arise as a result
of pruning globally, rather than locally (i.e. layer-wise).

• Investigated whether stability to sample of SGD noise is an always emergent property of
"winning ticket" subnetworks or a phenomenon that can only be observed when "winning
tickets" are found with IMP by (1) reproducing the main results from the Linear Mode
Connectivity and the Lottery Ticket Hypothesis paper [2], and (2) performing instability
analysis on two diffent pruning algorithms: Gem-Miner [13], and Fisher pruning [12].

2 Fisher Pruning Background

A good heuristic for deciding which weights to prune from a model is those whose removal will result
in the smallest drop in performance. Fisher pruning [12] offers a mathematically justified method of
pruning which aligns well with this heuristic. In this section, we summarise the theory underlying
Fisher pruning, as detailed in [12].

Formally, let us consider the task of supervised classification. Here, we have a training set comprised
of N training examples, which are pairs of inputs x ∈ X and corresponding output classes y ∈
Y . This can be interpreted probabilistically, with inputs drawn from some distribution Qx and
corresponding outputs drawn from a conditional distribution Qy|x [14].

The goal is to then construct a model, parameterised by weights w ∈ Rd, whose output can be
interpreted as a probability distribution P (y|x;w) (commonly achieved by applying the softmax
function to the output of our model[15]), such that the model’s output distribution is close to the true
conditional distribution of the dataset, Qy|x. Typically this is done by updating the model weights to
minimise a loss function L, and in this case an appropriate loss function is the cross-entropy loss,
defined as:

L(w) = EQ̂[− logP (y|x;w)] (1)

where the expectation is typically taken with respect to the training data distribution, Q̂.

Having such an expression for the loss parameterised by the weights of the model is useful, as we can
use it to approximate how much the loss would change as a result of altering, or pruning, a given
parameter, using a Taylor expansion. In alignment with the notation used by [12], if we denote the
gradient of the loss function as g = ∇wL(w), and the Hessian matrix as H = ∇2

wL(w), then we
can construct a 2nd order Taylor expansion for the change in loss corresponding to pruning the kth
parameter (i.e. setting it to 0). Again using the notation used by [12], if we denote the vector entirely

2

populated with 0s, except for at its kth entry, where it is equal to 1, as ek, then the approximation of
the change in loss is:

L(w − wkek)− L(w) ≈ −gkwk +
1

2
Hkkw

2
k (2)

If we assume that pruning is done once the model has been trained to a good performance, and hence
the parameters lie in a minimum in the loss landscape, then the first term is eliminated [16]. This
leaves us with the diagonal of the Hessian, Hkk, to deal with, which can be approximated by using
the Fisher information matrix, F , for efficiency [14]. In the case that the conditional distribution
of the model, P (y|x;w) is equal to the true conditional distribution of the training data Q̂y|x, then
it has been shown that the Fisher and Hessian matrices are the same [17]. This assumption can be
used for our iterative pruning since we prune once the model has been trained to sufficiently good
performance.

The diagonal of the empirical Fisher information matrix, F̂ , calculated using an expectation with
respect to the training data distribution, Q̂, consisting of N training points, is defined as:

Hkk ≈ F̂kk =
1

N

N∑
n=1

g2nk (3)

where gnk is the derivative of the loss of the kth parameter with respect to the nth datapoint.
Substituting this approximation for Hkk into 2, and removing the first term on the RHS due to
the assumption of the model being at an optimum in the loss landscape, yields the following
approximation for the increase in loss when pruning the kth parameter:

L(w − wkek)− L(w) ≈ 1

2N
w2

k

N∑
n=1

g2nk (4)

as derived in [12]. We can easily plug this pruning method into the iterative pruning framework;
at each iteration of pruning, we greedily prune the p% of unpruned weights which correspond to
the lowest estimated increase in loss. However, it isn’t mathematically clear whether this technique
should offer an advantage over magnitude pruning in the iterative pruning framework. This is because
the Taylor expansion for the approximated increase in loss assumes that unpruned weights are kept at
their same values; with the iterative pruning framework we reset them to their initial values, so the
mathematical justification underlying this algorithm is somewhat diminished in this context.

3 Fisher Pruning Evaluation

We evaluate Fisher pruning against two other pruning methods: random pruning and magnitude
pruning, on two models. Firstly we use LeNet on MNIST, with each experiment replicated three
times to increase the reliability of the results. For the second model, we use ResNet-20 on CIFAR10.
Because one pruning run of this model took ∼ 9hrs to run on a Google Colab [18] Pro GPU (usually
T4 or P100), we decided to experiment with different settings for the ResNet, rather than replicating
the same experiment three times. When pruning, we pruned 20% of parameters at each iteration. The
other parameters used are listed in table 1 or in the description of each experiment.

Model Model Type Dataset BatchSize Optimizer LR Training Steps Layers to ignore Momentum
LeNet 300_100 MNIST 60 Adam 0.0012 50k iterations - -
ResNet 20 CIFAR10 128 SGD 0.1 30k iterations fc.weight 0.9

Table 1: Hyper-Parameter settings for experiments.

3.1 How Different are the Weights Chosen to Prune by Fisher Pruning compared to
Magnitude Pruning?

Before blindly comparing the performance of Fisher pruning with magnitude pruning, it made sense
to probe how much the two pruning criteria would differ. In the case of Fisher pruning, we can see in

3

Figure 1: Histograms of absolute values of weights selected to be pruned by Fisher pruning and magnitude
pruning on a LeNet trained on MNIST, with 20% of weights to be pruned. The histogram of all the weights in
the network is included for comparison. There is a clear difference in weights chosen by Fisher pruning and
magnitude pruning, with the former selecting some far larger weights to prune than the latter.

equation 4 that the estimated increase in loss corresponding to pruning weight wk is proportional
to w2

k. As we greedily prune the weights corresponding to the lowest estimated increase in loss, we
might expect that this results in Fisher pruning selecting the smallest weights to prune, and hence
doesn’t differ much from magnitude pruning.

In order to evaluate this question, we trained a single LeNet on the MNIST dataset for 50, 000
iterations, at which point its test accuracy reached ∼ 98%. We then used Fisher pruning and
magnitude pruning to select 20% of the weights to prune and plotted a histogram of the absolute
values of the weights selected to be pruned, as shown in figure 1. Clearly, Fisher pruning doesn’t
merely select the p% of weights with the lowest absolute magnitude but selects weights across a
range of magnitudes. For comparison, the largest weight selected to prune by Fisher pruning in the
above experiment had a magnitude of 0.665, compared to 0.036 for magnitude pruning. Therefore, it
is reasonable to expect that Fisher pruning may behave quite differently from magnitude pruning.

3.2 How does the Accuracy of Pruned Models Change as they become more Sparse?

In figure 2 we plot the test accuracy obtained by pruned networks against the percentage of weights
remaining. We do this for random pruning, magnitude pruning and Fisher pruning. For the latter two
methods, we experiment with both resetting weights to their initial values between pruning iterations,
as well as randomly re-initialising them (rand reinit), to explore the role that initialisation plays in
identifying winning tickets.

Figure 2: Test accuracy at the end of training for models with varying degrees of sparsity for the pruning
methods. This plot is obtained for the LeNet-300-100 architecture on MNIST.

Clearly, both Fisher pruning and magnitude pruning vastly exceed the performance of random
pruning, as expected. Fisher pruning and magnitude pruning are both similarly effective, although

4

they seem to have differing strengths. On the one hand, for networks with a percentage of unpruned
weights exceeding 1%, magnitude pruning is more effective. For many sparsities in this range, the
winning tickets identified by magnitude pruning actually exceed the performance of the unpruned
network, whilst Fisher pruning tends to identify tickets that more closely match the performance of
the unpruned network. However, once the percentage of unpruned weights drops below 1%, Fisher
pruning starts obtaining better results than magnitude pruning, yielding a test accuracy of 96% for
networks with only 0.3% of weights remaining unpruned.

Another interesting phenomenon to observe is the role that re-initialisation plays for both Fisher and
magnitude pruning, particularly in the very sparse regime. For both Fisher and magnitude pruning,
resetting the weights to random values, rather than their initial values, between pruning iterations
reduces the accuracy of winning tickets, confirming the importance of re-initialisation as identified in
[6]. However, once the percentage of weights remaining drops below 1%, randomly re-initialising
weights has a bigger negative impact on magnitude pruning than it does for Fisher pruning. This
difference is interesting, as the theory underlying Fisher pruning doesn’t take into account the fact
that unpruned weights are reset to their initial values.

A final observation is that the results we obtained for magnitude pruning were slightly better than
the original LTH paper [6]. However, we noticed that they were pruning locally (i.e. pruning p% of
weights from each individual layer), whereas we were pruning globally. Global pruning seems to
offer an advantage and is explored further in section 3.5.

3.3 How does the pruning method chosen affect the training speed of identified tickets?

Figure 3 shows how the test error of pruned networks evolves as they’re trained. As was the case in the
original LTH paper [6], it is clear to see that with magnitude pruning, up to a certain threshold, sparser
networks are able to reach a higher test accuracy than the unpruned network, with fewer iterations of
training. Interestingly, with Fisher pruning, models with between 10− 100% of weights remaining
seem to all reach similar accuracy with a similar number of training iterations; the sparsity induced by
this technique doesn’t seem to offer quite as much of a training advantage as with magnitude pruning.
However, we found that more of a gap did become apparent for Fisher pruning once we moved onto
the ResNet-20 architecture, seen in section 3.6.

Figure 3: Evolution of test error for networks with various sparsity levels, obtained with Fisher pruning and
magnitude pruning on the LeNet architecture. Lines are labelled with the percentage of unpruned weights in the
model.

3.4 Supermasks

The appearance of supermasks, binary masks which, when applied to untrained networks in order
to prune them, achieve better than random test performance, was noted in [1]. In light of this, we
investigated how well the masked (but untrained) networks performed with the masks identified over
the course of our pruning investigation, as visualised in figure 4.

We obtained similar results to [1] for magnitude pruning, with the untrained network with 2.7%
weights remaining achieving over 0.6 accuracy. Fisher pruning also discovered supermasks, with

5

Figure 4: Supermask propagation for the three pruning methods. The model used is LeNet on MNIST.

the untrained network with 2.7% weights remaining to achieve a mean accuracy of 0.32 across the
three training runs. We can say, with statistical significance (p ≈ 0), that this is better than random
guessing on the test set.

It is interesting that there is such a gap in the best supermasks identified by magnitude pruning and
Fisher pruning. In [1], the authors hypothesise that when pruning the weights with the smallest
magnitude (i.e. magnitude pruning), this can be viewed as similar to training, as the mask tends to
move these weights in the direction they follow during training (i.e. towards zero). We hypothesise
that this may also explain the reason that Fisher pruning doesn’t produce such “super” super-masks.
As demonstrated in figure 1, Fisher pruning doesn’t just prune the weights with the smallest magnitude
but also chooses some larger weights to prune. We suggest that by resetting these larger weights to 0,
we aren’t necessarily resetting these weights in the direction they followed during training, hence
reducing the power of the supermasks produced. However, it is notable that supermasks are no longer
present if we randomly reinitialise the weights of the networks instead of resetting them to their initial
values; the reason for this remains unclear.

3.5 Is Global Pruning Uniform Across Layers?

Finally, in order to explain the difference in results obtained by us for magnitude pruning compared to
the original LTH paper [6], as described in section 3.2, we noted that we performed pruning globally,
rather than locally. This begs the question - how different are the sparsities of different layers when
performing global pooling?

In table 2 we note the layer-wise sparsities of the LeNet networks pruned to 0.3% remaining weights
globally. Clearly, pruning doesn’t occur uniformly between layers; a far greater proportion of weights
are left unpruned in the final layer of the network. We hypothesise that this may explain the superior
performance of global magnitude pruning compared to local magnitude pruning; by not specifying
the layer-wise sparsity of networks, we enable pruning to leave a greater proportion of weights
unpruned in more critical layers of the network.

Layer 1 Layer 2 Layer 3
Fisher Pruning 0.184(±0.003)% 0.756(±0.021)% 13.800(±0.003)%

Magnitude Pruning 0.146(±0.001)% 0.901(±0.017)% 18.467(±0.643)%
Table 2: Mean (and standard deviation) percentage of weights remaining in each layer of the LeNet network
when pruned to 0.3% weights remaining globally.

3.6 Performance on Resnet-20

After verifying that Fisher pruning was indeed able to identify lottery tickets in the LeNet-300-100
architecture, we decided to evaluate its performance when applied to a Resnet-20 model trained on

6

the CIFAR-10 dataset. We also experimented with two different re-initialisation schemes. With the
first, after each iteration of pruning, we reset unpruned weights to their randomly initialised values, as
in the original LTH paper [6]. With the second, we instead rewound weights to their values from 2000
iterations into training, as subsequent work [2] found this offered an advantage for more complex
architectures.

Figure 5: Comparison of test accuracies obtained by Resnet-20 models of different sparsities using both
magnitude pruning and Fisher pruning. We also compare rewinding weights to their values 2000 iterations into
training, rather than resetting them to their randomly initialised values. A zoomed-in version of this plot can be
found in appendix B.

Figure 5 shows how the test accuracy obtained by the Resnet-20 models changed as they were pruned.
Similar to the LeNet architecture, it is clear to see that Fisher pruning and magnitude pruning achieve
similar performance across the different sparsities. Also, rewinding weights, rather than resetting
them to their initial values, seems to improve performance, particularly once the networks become
particularly sparse, as found in [2].

In terms of the evolution of the test accuracy of winning tickets over iterations of training, the story is
similar to the LeNet model. Up to a certain threshold, the pruned models are able to reach higher
test accuracies with fewer iterations of training, as seen in figure 6. For Fisher pruning, this gap in
performance compared to the unpruned model seems to be more pronounced than was the case with
the LeNet architecture.

Figure 6: Evolution of test error for Resnet-20 networks with various sparsity levels, obtained with Fisher
Pruning and Magnitude Pruning. Note that when pruning the models in this plot, the model weights were reset
to their initial values in between pruning iterations, as in the original LTH paper [6]. Lines are labelled with the
percentage of unpruned weights in the model.

Perhaps the most interesting difference between the experiments performed on the LeNet model and
the ResNet model is that, despite using the same pruning methods on both, the masks generated for
the ResNet model weren’t supermasks. That is, upon applying the mask and resetting the model’s

7

Figure 7: Test accuracy of the Resnet-20 models with a mask applied to the untrained network weights over
different sparsities. The resulting networks have an accuracy no better than random; no supermasks have been
found.

weights to their initial values, this masked model performed no better than the randomly initialised
model, as was the case in figure 3. This can be seen in figure 7.

4 Mode Connectivity

In this part of the project, we investigate the LTH through the lens of mode connectivity. Specifically,
we consider the implications of the findings in [2], which suggest that subnetworks identified through
iterative magnitude pruning (IMP) are only successful when they are stable to stochastic gradient
descent (SGD) noise, introduced as a result of factors such as random ordering of data.

In the original LTH paper, IMP fails to find winning tickets for complex model architectures, including
ResNet 20 and VGG-19. [2] seek to explain the successes and failures of their IMP experiments
with linear mode connectivity. Importantly, they find that subnetworks are only matching when they
are stable to SGD noise. Subnetworks that achieve the same performance as their corresponding
unpruned networks are referred to as “matching”, rather than "winning tickets" as [2] rewind weights
to iteration k > 0, instead of resetting them to their random initial values as [19] initially proposed.
The study proposes instability analysis to understand if a network is stable to SGD noise, where linear
mode connectivity is the method for determining instability.

The methodology proposed by [2] for determining if a network is stable to SGD noise is visualised
in figure 8. The process involves creating two copies of a network N , with the same randomly
initialised weights W0. These two copies are then trained with different samples of SGD noise to
produce trained weights W 1

T and W 2
T . The study then linearly interpolates between the resulting

trained networks to assess whether the models are connected by a linear path of non-increasing error,
a phenomenon termed linear mode connectivity.

Figure 8: Diagram representing the interpolation experiment, from [2]. The left diagram shows training two
copies of neural network N from the same initialisation but with different samples of SGD noise, whereas the
second shows firstly training a model N to iteration k, then creating 2 copies of this model and training them
until completion with different SGD noise [2].

The instability of N to SGD noise is defined as the maximum increase in error along this linear path
p between the two minima [2] (red line in figure 8). N is considered stable to SGD noise when

8

instability is ≈ 0. Formally, the error barrier height on the linear path between W1 and W2 is defined
as ξsup(W1,W2)− ξave(W1,W2), where ξsup(W1,W2) is the maximum error along the linear path,
and ξave(W1,W2) is the mean error.

Gem-Miner The Gem-Miner algorithm [13] is different to the approach offered by IMP as it
focuses instead on finding subnetworks at initialization, rather than the time-consuming process
of training, pruning, and re-training that IMP requires. In order to do so, Gem-Miner computes
normalised scores associated with each of the weights in the network, such that the scores determine
their importance. Backpropagation is then used to update these scores, and the rounded scores are
used as a mask.

5 Mode Connectivity Experiments

We investigate whether the correlation between matching subnetworks and their stability is a general
phenomenon that can be observed for any pruning algorithm that finds matching subnetworks or a
phenomenon that can only be observed when pruning with IMP. [2] find that matching subnetworks
are not stable to SGD noise when models are pruned randomly or when they are randomly initialised.
We seek to compare IMP against two different pruning algorithms: Gem-Miner, and Fisher pruning.

We start by replicating the main findings outlined in [2], using IMP without rewind on LENET
and RESNET-20. We then extend the findings of [2] by finding subnetworks for RESNET-20 with
Gem-Miner and Fisher pruning, linearly interpolating between the discovered subnetworks and
performing instability analysis as outlined in [2].

Figure 9: The training error along the linear path p between two equally initialised pruned subnetworks trained
with different samples of SGD noise. The figure shows the interpolation experiment on LENET MNIST and
RESNET-20 on CIFAR10. While LENET is clearly stable to SGD noise, RESNET-20 is not when weights are
rewound to iteration 0.

As can be seen in figure 9, the experiment from [2] was successfully reproduced. When rewinding
the weights back to their initial values (k = 0) and training the two copies of sparse subnetworks
with different samples of SGD noise only LENET is stable. The RESNET-20 has no such linear mode
connectivity between the minima found by two subnetworks. This figure matches the result in [2].

As can be seen in figure 10a, the two RESNET-20 subnetworks found with Gem-Miner also do not
demonstrate linear mode connectivity when trained from the same initialisation. When moving along
the linear path p, the training error increases even more rapidly than it does on RESNET-20 pruned
with IMP. This finding suggests that the choice of IMP as a pruning algorithm does have some effect
on a network’s instability.

Finally, we test the same experiment with Fisher pruning, linearly interpolating between two RESNET-
20 subnetworks trained to the same sparsity as the IMP experiments (16.8%). Results can be seen in
figure 10b. The error barrier along this linear path is also non-zero, meaning that the network is not
stable to SGD noise. However, unlike in the Gem-Miner experiment, the instability levels along the
linear path between the two minima are very similar to those of IMP subnetworks in figure 9 .

9

(a) Train error along the linear path p between two
equally initialised pruned subnetworks trained with
different samples of SGD noise. The figure shows the
interpolation experiment for RESNET-20 on CIFAR10.
The algorithm used for pruning was Gem-Miner [13].
RESNET-20 was found to be unstable to SGD noise.
The experiment follows the procedure as outlined in
[2].

(b) Train error along the linear path p between two
equally initialised pruned subnetworks trained with
different samples of SGD noise. The figure shows the
interpolation experiment for RESNET-20 on CIFAR10.
The algorithm used for pruning was Fisher Pruning [12].
RESNET-20 subnetworks were found to be unstable to
SGD noise. The experiment follows the procedure as
outlined in [2].

Figure 10: ResNet-20 on CIFAR10 experiments.

6 Conclusion

As our project investigated the lottery ticket hypothesis from two perspectives, we have arrived at two
sets of conclusions. Fisher Pruning did not seem to offer much of a benefit over magnitude pruning
in the evaluation settings we used 1, although it was not much worse, and still far better than random
pruning. Whilst it seeks to prune weights whose removal will lead to the lowest increase in loss, the
approximation for the increase in loss assumes that the non-pruned weights won’t change value. This
clearly isn’t the case when they are reset to their initial values, as in the iterative pruning framework.

Another interesting finding is related to our supermask experiment in section 3.4, in which the
supermasks generated by Fisher pruning were much weaker than magnitude pruning. We explained
this by inspecting the histograms of the magnitudes of the pruned weights 1, seeing that Fisher
pruning would prune some significantly larger weights than magnitude pruning. We believe that
these two observations potentially reinforce the hypothesis proposed in [1] that pruning small weights
can be viewed as a form of training, and that perhaps setting the larger weights identified by Fisher
pruning to 0 is detrimental to the network’s performance, leading to the reduced performance of its
discovered “supermasks”. We also saw that resetting weights to their initial values was a crucial part
of forming supermasks, an observation for which we have no concrete explanation, and which would
be interesting to investigate further.

As for the mode connectivity experiments, we have successfully replicated the main findings from the
[2] and showed that while IMP subnetworks exhibit linear mode connectivity on small models, they
fail to do so on larger models. Our analysis of the instability of subnetworks found with alternative
pruning algorithms is very much inconclusive. While the instability of subnetworks found with
Gem-Miner hints at the possibility that sparse subnetworks found with IMP may be inherently
different from sparse networks found with other pruning algorithms, analysis of the instability of
Fisher subnetworks shows the opposite. Both Fisher and IMP subnetworks exhibit similar levels of
instability across the linear path between the 2 minima. Further studies should investigate whether the
variant of RESNET-20 with lower learning rates or learning rate warmup (hyperparameters proposed
by [19] to find matching subnetworks) exhibit linear mode connectivity when pruned with alternative
algorithms. This phenomenon has been observed for IMP pruned subnetworks [2]. Further, the
instability analysis of non-matching subnetworks could be performed to disentangle the properties of
"winning tickets" from non-matching subnetworks.

10

7 Individual Contributions

We split this project into two sub-projects - the first investigating Fisher pruning and the second
investigating mode connectivity. Thomas and Teodora worked on Fisher pruning, whilst Matevz and
Yumna worked on mode connectivity. Individual contributions are as follows:

1. Thomas - Software (implemented Fisher pruning and assisted Yumna in writing some
mode connectivity code), conceptualisation of the Fisher pruning investigation, running
experiments for Fisher pruning and analysing/plotting the results, as well as writing up
several sections of the Fisher pruning part of the project and parts of the abstract/conclusion
analysing Fisher pruning.

2. Teodora - Software (implemented Random Pruning), run multiple experiments on Fisher
Pruning and plotted/analysed results, write up the introduction and the evaluation for fisher
pruning for some of the experiments. Review.

3. Matevz - Proposed the research objective for the linear mode connectivity project and
carried out the necessary research. Ran some experiments for mode connectivity (did not
end up being used in the report) and plotted figure 9. Analysed results, wrote up linear mode
connectivity section, abstract and conclusion referring to linear mode connectivity part of
the project.

4. Yumna - Software (replicated and implemented mode connectivity work and newer pruning
algorithms ultimately not featured in this work), ran multiple experiments for mode connec-
tivity and newer pruning algorithms. Plotted results, edited/contributed to write-up of mode
connectivity section.

References
[1] Hattie Zhou, Janice Lan, Rosanne Liu, and Jason Yosinski. Deconstructing lottery tickets: Zeros, signs,

and the supermask. Advances in neural information processing systems, 32, 2019.

[2] Jonathan Frankle, Gintare Karolina Dziugaite, Daniel Roy, and Michael Carbin. Linear mode connectivity
and the lottery ticket hypothesis. In International Conference on Machine Learning, pages 3259–3269.
PMLR, 2020.

[3] Yann N Dauphin and Yoshua Bengio. Big neural networks waste capacity. arXiv preprint arXiv:1301.3583,
2013.

[4] Misha Denil, Babak Shakibi, Laurent Dinh, Marc’Aurelio Ranzato, and Nando De Freitas. Predicting
parameters in deep learning. Advances in neural information processing systems, 26, 2013.

[5] Chunyuan Li, Heerad Farkhoor, Rosanne Liu, and Jason Yosinski. Measuring the intrinsic dimension of
objective landscapes. arXiv preprint arXiv:1804.08838, 2018.

[6] Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural
networks. arXiv preprint arXiv:1803.03635, 2018.

[7] Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep neural networks with
pruning, trained quantization and huffman coding. arXiv preprint arXiv:1510.00149, 2015.

[8] Babak Hassibi and David Stork. Second order derivatives for network pruning: Optimal brain surgeon.
Advances in neural information processing systems, 5, 1992.

[9] Vivek Ramanujan, Mitchell Wortsman, Aniruddha Kembhavi, Ali Farhadi, and Mohammad Rastegari.
What’s hidden in a randomly weighted neural network? In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 11893–11902, 2020.

[10] Tianlong Chen, Jonathan Frankle, Shiyu Chang, Sijia Liu, Yang Zhang, Zhangyang Wang, and Michael
Carbin. The lottery ticket hypothesis for pre-trained bert networks. Advances in neural information
processing systems, 33:15834–15846, 2020.

[11] Tianlong Chen, Yongduo Sui, Xuxi Chen, Aston Zhang, and Zhangyang Wang. A unified lottery ticket
hypothesis for graph neural networks. In International Conference on Machine Learning, pages 1695–1706.
PMLR, 2021.

[12] Lucas Theis, Iryna Korshunova, Alykhan Tejani, and Ferenc Huszár. Faster gaze prediction with dense
networks and fisher pruning. arXiv preprint arXiv:1801.05787, 2018.

[13] Kartik Sreenivasan, Jy-yong Sohn, Liu Yang, Matthew Grinde, Alliot Nagle, Hongyi Wang, Kangwook
Lee, and Dimitris Papailiopoulos. Rare gems: Finding lottery tickets at initialization. arXiv preprint
arXiv:2202.12002, 2022.

11

[14] Torsten Hoefler, Dan Alistarh, Tal Ben-Nun, Nikoli Dryden, and Alexandra Peste. Sparsity in deep
learning: Pruning and growth for efficient inference and training in neural networks. J. Mach. Learn. Res.,
22(241):1–124, 2021.

[15] Christopher M Bishop and Nasser M Nasrabadi. Pattern recognition and machine learning, volume 4.
Springer, 2006.

[16] Yann LeCun, John Denker, and Sara Solla. Optimal brain damage. Advances in neural information
processing systems, 2, 1989.

[17] Alexander Ly, Maarten Marsman, Josine Verhagen, Raoul PPP Grasman, and Eric-Jan Wagenmakers. A
tutorial on fisher information. Journal of Mathematical Psychology, 80:40–55, 2017.

[18] Ekaba Bisong. Building machine learning and deep learning models on Google cloud platform. Springer,
2019.

[19] Jonathan Frankle and Michael James Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural
networks. 2019.

A Technical Details

The code used for the evaluation of Fisher pruning can be found at https://github.com/
Thomas-Christie/lth while the code for the stability analysis experiments can be found at
https://github.com/yu202147657/lth, both of them are forks of https://github.com/
facebookresearch/open_lth, a repository written by Jonathan Frankle, author of the original
LTH paper, which facilitated the running of pruning experiments.

B Plots Fisher Pruning

Figure 11: Zoomed in version of figure 5

12

https://github.com/Thomas-Christie/lth
https://github.com/Thomas-Christie/lth
https://github.com/yu202147657/lth
https://github.com/facebookresearch/open_lth
https://github.com/facebookresearch/open_lth

	Introduction
	Fisher Pruning Background
	Fisher Pruning Evaluation
	How Different are the Weights Chosen to Prune by Fisher Pruning compared to Magnitude Pruning?
	How does the Accuracy of Pruned Models Change as they become more Sparse?
	How does the pruning method chosen affect the training speed of identified tickets?
	Supermasks
	Is Global Pruning Uniform Across Layers?
	Performance on Resnet-20

	Mode Connectivity
	Mode Connectivity Experiments
	Conclusion
	Individual Contributions
	Technical Details
	Plots Fisher Pruning

